2 research outputs found

    Adaptive Audio Classification Framework for in-Vehicle Environment with Dynamic Noise Characteristics

    Get PDF
    With ever-increasing number of car-mounted electric devices that are accessed, managed, and controlled with smartphones, car apps are becoming an important part of the automotive industry. Audio classification is one of the key components of car apps as a front-end technology to enable human-app interactions. Existing approaches for audio classification, however, fall short as the unique and time-varying audio characteristics of car environments are not appropriately taken into account. Leveraging recent advances in mobile sensing technology that allows for an active and accurate driving environment detection, in this thesis, we develop an audio classification framework for mobile apps that categorizes an audio stream into music, speech, speech and music, and noise, adaptability depending on different driving environments. A case study is performed with four different driving environments, i.e., highway, local road, crowded city, and stopped vehicle. More than 420 minutes of audio data are collected including various genres of music, speech, speech and music, and noise from the driving environments

    Adaptive Multi-Class Audio Classification in Noisy In-Vehicle Environment

    Full text link
    With ever-increasing number of car-mounted electric devices and their complexity, audio classification is increasingly important for the automotive industry as a fundamental tool for human-device interactions. Existing approaches for audio classification, however, fall short as the unique and dynamic audio characteristics of in-vehicle environments are not appropriately taken into account. In this paper, we develop an audio classification system that classifies an audio stream into music, speech, speech+music, and noise, adaptably depending on driving environments including highway, local road, crowded city, and stopped vehicle. More than 420 minutes of audio data including various genres of music, speech, speech+music, and noise are collected from diverse driving environments. The results demonstrate that the proposed approach improves the average classification accuracy up to 166%, and 64% for speech, and speech+music, respectively, compared with a non-adaptive approach in our experimental settings
    corecore